Home Physics Quantum Mechanics Improves Burglar Alarms - Physics Prevents Breach Into Your House

Quantum Mechanics Improves Burglar Alarms – Physics Prevents Breach Into Your House

Burglar Alarm is one of the most reliable systems that might ensure you a relaxed goodnight sleep, isn’t it? But, what if we tell you that the system itself is flawed and can be spoofed to avoid detection? However, you don’t have to worry about it. Researchers have proposed a better and foolproof solution to it.

The Problem-

Advanced systems for temper protection rely currently on optic-fiber cables entangled through and around the material to be safeguarded. These cables carry optical signals that can traverse and reach the detector at a secure site. The efforts to tamper a break-in into the system will tamper the signals and thus the intrusion will be detected.

But such systems are only reliable for simple attacks or break-ins. A smart and technologically equipped intruder may easily reproduce or spoof the original signal. Since the detector doesn’t receive any alternation in the signals, it won’t suspect an intrusion. Therefore, hiding the presence and avoiding detection of the intruder.

The detection of unauthorized tampering—in stores of anything from sensitive documents to nuclear materials—is improved by exploiting the basic properties of quantum physics, according to a new study. Researchers demonstrated that optical monitoring systems if made sensitive to quantum properties of light, could avoid vulnerabilities afflicting the best current tamper-detection systems. The new technique could soon find its way into practical use.

The Proposed Solution

This problem can be overcome by using optical signals that are far harder to spoof, argues a team of researchers from the Oak Ridge National Laboratory in Tennessee led by Travis Humble. Quantum physics implies that photons can be created as so-called entangled pairs, where a disturbance to a physical property of one particle—say, its frequency or polarization—could also immediately alter the same property in its partner particle. In calculations and experiments, the team showed that such pairs could be used to thwart intercept-resend-style attacks.

Their idea was to create a stream of entangled photon pairs. For each pair, one would be sent directly to a nearby detector in a secure place. While the other would instead travel down fiber and through the protected zone, before joining its partner at the detector. In the absence of any disturbance along the way, the second photon, upon reaching the detector, would still show a perfect entanglement with the first. For example, the two photons might have been created in a state with opposite polarizations: if one is vertical, the other must be horizontal. In contrast, any disturbance to the fiber would alter properties of that second photon, destroying the entanglement, so that some pairs might have the same rather than opposite polarizations.

Moreover, even a spoofed imposter particle could not replicate the expected entanglement. That impossibility, says team member Brian Williams, follows from the “no-cloning” theorem of quantum theory, which rules out the possibility of making a perfect copy of an unknown quantum state. Measuring the intercepted photon would destroy any information about its original state.

To demonstrate the scheme, the researchers generated entangled photon pairs and sent each photon through a 20-meter fiber and then back to a detector. One loop was meant to simulate passage through the protected materials; the other acted as a reference. Within one loop, the team inserted a transparent but weakly disturbing obstacle in the photon path to mimic a tampering event. In the experiments, they were able to detect the presence of the obstacle with a probability of 0.9999, while also maintaining a false positive rate of only one part in one billion.

Reliability of the System-

The new method, however, would be vulnerable to still more sophisticated attacks. The no-cloning theorem prevents an attacker from measuring and reproducing a photon’s state. But quantum mechanics still allows for teleportation, where the unknown state is destroyed in the process of transferring it from one photon to another. However, Williams says, “Teleportation requires much more sophisticated equipment, especially given the picosecond timing that would be required to prevent the security system from noticing delayed photons.”

“You will probably not want to invest in this beautiful quantum seal to protect the safe in your hotel room,” says Pepijn Prinkse of the University of Twente in the Netherlands. But he says there are many situations where the complexity is worthwhile, such as bank vaults or high-security computer servers, in addition to nuclear materials.

Oak Ridge National Laboratory has now patented the system, and Williams and his colleagues hope that it will soon come into practical use. Williams says the system is ready for the rigors of the real world. “While quantum states are typically considered quite fragile, as quantum states and entanglement verification goes, ours is very robust.”

Source –  Oak Ridge National Laboratory

Reference – https://doi.org/10.1103/PhysRevApplied.5.014001

Besides this, you can view our video and blog collections in the Video Section & Blog Section of the website.

Abhijeet Mahato
Abhijeet Mahatohttp://scilynk.in
Abhijeet is a 4th-year Undergraduate Student at IIT Kharagpur. His major inclination is towards exploring the science behind the things of our day-to-day life.

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Most Popular

Stars – A Mystery To The Dark Night

When you look at the dark night sky, it seems beautiful and mysterious. Living beneath this open dark sky, the earliest humans...

Herd Immunity and Pandemics – Solution to COVID-19 Crisis?

During the current pandemic, we often hear the term herd immunity. What is Herd Immunity, you ask? Herd immunity is "resistance against...

The fastest rotating disk galaxy – UGC 12591

The Moon goes around the Earth at about a kilometer a second; the Earth goes around the Sun at about 30 kilometers...

Solvatochromism – One solute, multiple colors, endless possibilities

Introduction: Most chemicals impart almost the same colour irrespective of the solvent they are...

Recent Comments

Alex Watson on Chika’s Test and Proof
Abhijeet Mahato on Chika’s Test and Proof
Chandrashekar Iyer on Chika’s Test and Proof
Chandrashekar iyer on No Protons Just Neutrons
Chandrashekar Iyer on Pervading Darkness
Vivek Prakash on The Genomic Dust